Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure
نویسندگان
چکیده
A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO₂-Al₂O₃-TiO₂ nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570), and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrscopy, X-ray diffractometry (XRD), contact angle meter (CA), and scanning electron microscope (SEM). The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570). Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO₂-Al₂O₃-TiO₂ nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.
منابع مشابه
SYNTHESIS AND CHARACTERIZATION OF AN ENVIRONMENTALLY-FRIENDLY HYBRID NANOCOMPOSITE COATING
In this research, a kind of environmentally-friendly inorganic-organic hybrid nanocomposite coating based on silica containing titania/silica core/shell nanoparticles was synthesized and characterized for conservation of facade tiles in historical buildings. The matrix of the composite was prepared by sol-gel process via two methods of ultrasonic and reflux stirring. Tetraethyl orthosilicate (T...
متن کاملDesign, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملCore/Shell structured nanoparticles for imaging and therapy
Introduction: Nanoparticles have several exciting applications in various fields of biomedicine. It has been found that among different classes of nanoparticles core/shell is most promising for field of nano-medical imaging and therapy due to their distinct advantages. The core/shell type nanoparticles can be generally comprising of two nanoparticles one act as a core (inner ma...
متن کاملAg/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation
The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...
متن کاملPhotocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles
The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...
متن کامل